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Abstract—Efficiently managing of energy consumption while
ensuring a comfortable indoor environment is a crucial challenge
in Heating Ventilation and Air Condition (HVAC) system control.
Traditional approaches rely on physical models, while effective
to some extent, entail laborious, time-consuming processes and
lack scalability, imposing a substantial burden on HVAC system
controllers. In this paper, we propose a data driven approach
combined with Wireless Sensor Network (WSN) and Digital
Twins (DT), allowing for the representation of system components
in both the physical and virtual worlds. More specifically, a Long
Short-Term Memory (LSTM) is integrated to enable in-advance
modeling and prediction of indoor temperature for a potential
Model Predictive Controller (MPC). The LSTM model is trained
and validated using a dataset collected from sensors deployed
in a candidate building. Several benchmarks were evaluated to
ensure the efficiency of the proposed system model.

Index Terms—Digital Twin, LSTM, HVAC, Time Series

I. INTRODUCTION

Buildings are responsible for a considerable fraction of the
energy consumption in both the United States and Canada,
with figures of 40% and 30 %, respectively, of the total
energy consumption. Due to extreme weather conditions, it is
important for Canadians to have reliable and efficient HVAC
systems to ensure a comfortable indoor conditions. Therefore,
HVAC systems account for approximately 60% of the energy
consumption in commercial and institutional buildings and
40% in residential buildings [1] [2].

Both research and industrial communities have been actively
pursuing strategies to optimize the energy consumption of
HVAC systems. These efforts are centered on the development
of model-based control solutions. Mainly, two main paths of
model-based HVAC control research have been observed.

First, physics-based models (white box) such as resistance
capacitance (RC) models and simulation tools such as TRN-
SYS and EnergyPlus [3]–[6]. These models are derived from
the principles of thermodynamics related to buildings and
explicitly incorporate the modeling of heat transfer between
various building components. Furthermore, they offer the
advantage of providing a detailed and precise representation
of temperature variations. However, the development of such
models involves large number of parameters for detailed
understanding of system physics, which enlarges their di-
mensionality, and, consequently, makes them computationally

expensive [1] [7]. This challenge becomes a significant focal
point, particularly when considering the deployment of these
models at the edge layer, where devices are characterized by
limited resources.

Secondly, data-driven models (black box) have gained ac-
ceptance for addressing physics-based model limitations. They
enable dynamic behavior simulation through the correlation
between input and output variables. Such spectrum of models
include the autoregressive moving average (ARIMA), artificial
neural network (ANN), and support vector machine (SVM)
[1] [10]. These models are characterized by their ability to
simulate HVAC system behavior using only HVAC-related
data, requiring less comprehensive knowledge compared to
white-box models. This, in turn allows them to be flexible and
scalable. Furthermore, the structure of a data-driven model can
be adjusted to meet the specific prediction accuracy needs of
different buildings [9].

In this paper, we propose the LSTM (Long-Short Term
Memory) neural network model to establish an indoor tem-
perature prediction model. The used data were collected from
an actual residential building and the model was developed to
generate precise predictions conceived as an input to a Model
predictive controller (MPC). Furthermore, since a real building
is involved in this work, we consider the concept of digital
twins (DT) to model the functionalties and data interaction of
the proposed system. As defined by [10] ”The DT represents
and reflects its physical twin and remains its virtual counterpart
across the object’s entire lifecycle”. The novelty of this work
lies in the combination of the Digital Twins concept and data-
driven models to capture the spatio-temporal features of a zone
of interest and to facilitate efficient HVAC system controller
through WSN.

II. THE SYSTEM MODEL

The system model streamlines the intricate components, en-
abling seamless data collection, transmission, and processing.
It supports the analysis and control sub-modules, which initiate
controlling signals according to predefined strategies, aiming
to optimize the HVAC system control.

A. The Proposed Digital Twin Approach

The digital twin stands as a crucial and advancing tech-
nology in the realm of digital transformation and intelligent



enhancement. Leveraging data and modeling, the digital twin
has the ability to perform tasks such as monitoring, simulating,
predicting, and optimizing [17]. As shown in Fig 1, the

Fig. 1. The Proposed Approach to optimize HVAC System

propsed system model is composed of three main structures,
namely: Physical Twin (PT) represented by the real building,
the communication interface, which exchanges data and con-
trol signals in regular and industrial communication protocols.
In addition, the Digital Twin (DT) is represented by the
building model. The latter is proposed to incorporate two
layers namely cloud and edge. Devices on the edge layer
provide cross-communication between the PT and the cloud,
in addition to perform online data analysis and controlling
functionalities. While, the cloud layer is incorporated to em-
power the solution by enabling large-scale data collection and
storage, which may be used for efficient model training and
validation tasks. The following sections describe in more detail
the modules and functionalities of both PT and DT.

B. The Physical Twin of The Candidate Building

The term ’physical twin’ is a domain-specific concept that
refers to an entity of interest characterized by its tangible
existence [17]. In the presented case, the physical twin (PT) is
represented by the actual candidate building with several sen-
sors and actuators, in addition to the AC and heating modules.
The main objective is to enable efficient utilization of the later
modules that balance energy consumption with a sufficient
level of indoor comfort. Sensor nodes are deployed to collect
observations that represent different parameters contributing in
forming the environment. Information about the environment
around the building plant can be resourceful. Temperature,
humidity, power consumption, and conveyor vibration are
valuable information for maintaining efficient HVAC system
functionalities. On the other hand, actuators are deployed to
apply any action as a result of the processing of the raw
sensory data performed by the DT counterpart.

As shown in Fig2 the physical twin consists of the zone
of availability, sensor nodes and the AC and heating system
modules and their control panel of the candidate building. The
first corresponds to the location where sensors are deployed,
and it is the environmental conditions that are controlled by
the HVAC system. In this study a residential building in
Montreal-Canada is used where several sensors are deployed
to collect data mainly temperature and humidity, in addition
to outdoor temperature obtained from nearby weather station.

On the other hand, the candidate building is equipped with
two separate heating and ventilation systems. Currently, these
systems are operated using simple On/Off controllers, leading
to excessive energy consumption. The initial goal of our pro-
posed solution is to reduce energy costs by implementing an
AI-based controller. This process entails gathering data from
the candidate building to create a model that accurately reflects
the system’s behavior. These system dynamics can exhibit
both linear and nonlinear characteristics, and understanding
them is crucial to enhance the performance of any proposed
controller, particularly Model Predictive Control (MPC)-based
controllers.

Lastly, a communication interface is presented to bridge
communication between senors nodes at the PT and the edge
layer at the counterpart DT. This interface supports various
communication protocols, including WiFi, Zigbee, Bluetooth,
and LoRa. In our implementation, sensors transmit their data
to an intermediary gateway using Bluetooth technology. This
gateway is an integral part of the Physical Twin (PT) and is
connected to the building network via WiFi. However, due to
its resource limitations, the gateway is incapable of processing
data or carrying out decision-making tasks. Consequently, it
forwards the raw sensory data over WiFi, in our specific case,
to a more capable gateway device, such as a Raspberry Pi,
which is a crucial component of the the DT.

III. THE PROPOSED EDGE OF THE CB DIGITAL TWIN

Generally, the DT of the candidate building is designed to
encompass the virtual components necessary for processing
the data collected by the Physical Twin (PT). More specifically,
the raw sensory data transferred from the PT undergo a series
of transformations. These steps are essential to convert the data
into meaningful information that can be effectively utilized
for decision-making tasks, as exemplified in this study. In this
study, the DT comprises primarily two layers: the Edge layer
and the Cloud layer.

Real-time analysis of raw sensory data is imperative due to
its pivotal role in promptly detecting patterns and anomalies,
thus positively influencing event outcomes. To address this
necessity, the edge layer of the DT is strategically designed to
facilitate the deployment of Machine Learning (ML) models at
the edge and in close proximity to data sources. Several sub-
modules are incorporated within the edge layer to enable data
preprocessing and to handle the prediction tasks, as well as,
to keep tracking of the model performance. The later, which
in our case is LSTM, serves as an input source for the MPC
controller component that carries out the implementation of
predefined controlling strategies intended to ensure efficient
HVAC system functionalities. The following subsections de-
scribe the modules entailed in the edge layer of our DT.

A. Data Acquisition

In the proposed architecture, data is initially collected
through data acquisition APIs.These APIs act as an interme-
diary, bridging interactions between sensor nodes and edge
devices by providing a seamless abstraction layer that supports



Fig. 2. The Proposed Implementation of the digital twin of the candidate building

bi-directional communication. Several network protocols, as
depicted in Fig.1, including Zigbee, WiFi, and LoRA, play
a crucial role in establishing effective network level com-
munication. These protocols have been designed to operate
effectively in diverse environments, catering to a wide range of
use cases by enabling communication over varying distances
[11] [12]. On the other hand, data acquisition tasks can be
efficiently accomplished by means of application protocols
such as MQTT (https://mqtt.org/), and CoAP [13].

Typically, raw sensory data is transmitted to the gateway
device in the form of time series sequences that require the
use of specialized time series databases (TSDBs) such as Redis
(https://redis.io/), and InfluxDB (https://www.influxdata.com/).
The edge layer storage unit is temporary, and data will
be transformed in later steps to the aggregation module to
formalize it for online prediction tasks. Additionally, the data
will play a role in assessing the model’s performance. Finally,
collected data will be periodically transferred to the larger and
permanent data storage in the cloud to empower model training
and validation tasks.

B. Data Aggregation

This sub-module is designed to convert retrieved data pack-
ets into a format compatible with the deployed CB-LSTM
model. It encompasses various feature engineering steps fol-
lowed , including the extraction of new features from received
data. More specifically, extra features, such as day/night, and
week days or weekend, can be extracted, from the timestamp.
Additionally, the data will be shaped to ensure consistency
with the data format used during the model training and
validation phases.

C. CB-LSTM Model

This module is designed to carry out the execution of the
deployed model, enabling it to perform real-time prediction
and classification tasks. It has the flexibility to accommodate
single or multiple models to meet the edge layer’s service
requirements. In this study, we employ an LSTM model
specific to the candidate building. Recent data is continually
and periodically transmitted from the data aggregator module
in vectors of a predefined time window (TW) size.

As discussed in [14], the recursive forecasting strategy is
a widely adopted approach for predicting several future steps
that cover a predefined prediction horizon. In this approach,
collected sensory data are framed with fixed-length queue,
aligned with a chosen time window. The proposed model
forecasts one step into the future at each iteration within
the prediction horizon. During each prediction step, the most
recent forecasted value is incorporated into the sequence, and
the oldest value is removed. The recursive strategy is favored
for edge computing due to its lower computational resource
requirements compared to the direct strategy.
D. MPC controller

Model Predictive Control (MPC) operates by employing
a predictive mathematical model of the building’s dynamics
and continually conducting online optimizations to establish a
control strategy that attains the desired indoor conditions while
minimizing a specific parameter, such as energy consumption
[15]. Thus, values predicted by the LSTM model will be
transferred at a later step to be used as inputs for the MPC con-
troller. The MPC controller utilizes these received predictions,
in conjunction with other parameters such as outdoor temper-
ature retrieved online via an API and the setpoint received
from a user interface, to calculate the necessary values for



optimizing HVAC system functions. These calculated values
are subsequently transferred for application to the PT.

E. Model Evaluation

For our models deployed on edge devices to facilitate real-
time predictions, we’ve introduced a model monitoring and
evaluation module. This module plays a central role in our
approach by tracking model performance and ensuring that
the current ML model outcomes are aligned with the actual
observations.

Fig. 3. Time Series data windowing step

The Model Performance Indicator (PI) is iteratively com-
puted based on the availability of the actual data correspond-
ing to previously predicted data within a specific prediction
horizon. This process can be configured to run periodically
(e.g., hourly or daily) but is likely to be more effective
when monitored in shorter intervals. This can be achieved by
setting a model performance threshold and monitoring when
the model’s performance falls below the predefined threshold.
Consequently, empowering triggering retraining procedures in
real time to maintain model credibility.

IV. THE PROPOSED CLOUD OF THE CB DIGITAL TWIN

This section presents an in-depth explanation of the mod-
ules designed for initializing the CB-LSTM model, which is
planned for deployment and execution in subsequent stages at
the edge layer. It outlines the steps to construct ML models,
resulting in models for deployment and online predictions at
the edge layer. Within this framework, basically, two tasks are
intended to be carried out, as elaborated below:

1) Model Creation: Initially, this task represents the model
life cycle, commencing with the creation of the training
data set. This data set may originate from one or multiple
data sources, depending on the service’s requirements to
be equipped with the trained model.

2) Model Retraining: This task is triggered by receiving
a retraining request from an edge device or through
periodic configuration. Its purpose is to create a new
model by updating the data set with new instances and
then comparing the accuracy of the two models.

The following briefly highlights the common steps to promote
acceptable model performance.

A. Data cleaning

This step involves addressing missing data points, which
have the potential to negatively impact the performance of
our model. Since we are working with multiple inputs, each
associated with its respective time stamps, it becomes crucial
to ensure that all data points are aligned in terms of their
time stamps. To elaborate further, certain issues in the data
collection process, often stemming from operational factors
related to sensors, can result in time stamp incompatibility
between sensory data and data collected from other sources.

B. Feature Engineering

This step involves data transformation for time series pre-
diction tasks. Time series data is typically in the form of
sequential observations over time, which may not be directly
suitable for many machine learning algorithms that expect
tabular data as input. Hence, a windowing or sequencing step is
needed to divide the time series data into fixed-length windows
or sequences as depicted in Fig 3. Each window represents a
specific time interval and contains a subset of the time series
observations. This step helps capture temporal patterns and
dependencies in the data.

C. Model Evaluation

For model validation we applied the mean square error
(MSE) and R-squared (R2) as given in equations (1) (2).

MSE =
Σn

i=1

(
T ′
i − Ti

)2

n
(1)

Where T ′
i is the predicted temperature, while Ti is the actual

temperature , and ’n’ denotes the total number of observations
used for analysis.

R2 = 1− SSres

SStot
= 1−

Σi
(
T̂i − T̄i

)2
Σi

(
Ti − T̄i

)2 (2)

Where Ti is the real temperature,T̂i is the predicted tempera-
ture and T̄i is the mean of all the temperature values. Mainly,
the R2 formula computes two parameters: the residual sum of
squared errors of a regression model, denoted as (SSres), and
the total sum of squared errors, denoted as (SStot).

D. LSTM model

The Long Short-Term Memory (LSTM) model is a spe-
cialized type of recurrent neural network (RNN) that excels
at capturing and modeling sequential data with dependencies
over extended time intervals. Unlike traditional RNNs, LSTMs
are equipped with gating mechanisms that allow them to
selectively remember or forget information from previous time
steps, making them highly effective in handling vanishing gra-
dient problems and retaining crucial context information. This
unique architecture makes LSTMs particularly well-suited for
a wide range of tasks, including time series forecasting, natural
language processing, speech recognition, and various other
sequential data analysis applications [16].



Fig. 4. The LSTM model Performance inline with the size of data in days

V. EXPERIMENTATIONS AND RESULTS

This section presents the settings applied to gain the results,
as well as, present and discuss the obtained results.

A. Data Collection

This process involved the deployment of several sensors
and a gateway device in the CB located in Montreal area.
More specifically, two zones of the CB have been investigated
namely the community and meeting rooms. Set of Govee1

sensors are used to collect the indoor temperature and humid-
ity, while the outdoor temperature was collected from nearby
weather station. This data collection took place over a period
extending from August 11, 2023, to August 31, 2023.

• Indoor temperature and humidity readings were recorded
at one-minute intervals, resulting in a total of 29,253
samples.

• Outdoor temperature data was captured at one-hour in-
tervals, resulting in a total of 504 samples.

B. Data Preprocessing

Indeed, dealing with the incompatibility in the number
of samples required additional data preprocessing efforts to
achieve a consistent data collection granularity of one minute.
This alignment of data granularity was essential to ensure
that the data from both indoor and outdoor sources could be
effectively used together for analysis and modeling.

Furthermore, feature engineering steps were applied. Firstly,
to transform data samples to sequences that can be divided
in later steps to model inputs and outputs. Consequently, in
the present implementation a time window of 30 minutes has
been selected and our data has been structured accordingly.
Secondly, several features have been extracted from the time
stamp including day/night, season and weekdays/weekend.
These features are categorial and they were encoded to take
either 1,0 values. Thus, a normalization process also carried
out to avoid any biased model behavior due to different feature
scales.

1https://ca.govee.com/collections/smart-sensors

C. Model Creation and Validation

The approach adopted for model development and evalua-
tion closely simulates real-time conditions. Initially, the dataset
was divided into two distinct segments: one for training and
validation and another for testing the model’s performance.
Specifically, given our dataset spanning 21 days of data, the
most recent 2 days’ data were reserved for testing, while the
remaining 19 days were allocated to training and validation.
The training and testing process operates iteratively, beginning
with the use of data from the last day in the training dataset
and progressively moving backward to the first day (19 to 1).
For each day in this sequence, the data from that day was split
into an 80% portion for model training and a 20 % portion
for validation. Subsequently, the model was applied to the
testing dataset, and performance metrics, including accuracy
measurements, were recorded. Additionally, the execution time
of the model during each iteration was logged. This iterative
process continued, with the dataset progressively accumulating
data from each subsequent day, and the aforementioned steps
were repeated accordingly.

We configured the LSTM model with 50 neurons, a single
dense layer, and applied the mean absolute error loss function
in conjunction with the ’adam’ optimizer algorithm. Addition-
ally, the model was trained and tested following a multi-input
and one-output strategy.

Python 3.11 with Panda, Numpy and Matplotlib packages
are used for the data preprocessing and results visualization,
while the Keras APi is used for model design, creation and
validation.

D. RESULTS and DISCUSSION

The first experiment illustrates the duration of data accumu-
lation required on a daily basis to maintain satisfactory model
performance. This information enables us to offer users an
estimate of the time it will take to fully prepare the solution,
as presented in Fig 2, for operational use. As depicted in Fig 4,
our model achieved stable and acceptable performance after 9
days of data accumulation. More specifically, Fig 4 compares
model performance across training and validation iterations.



Each iteration can be perceived as a model that trained and
validated using a different dataset size, while using a uniform
testing dataset for all iterations.The testing data set is plotted
on the X-axis of the Fig 4 and it represents 1 day of data that
was not involved in the training and validation phase.

Fig. 5. The LSTM model Performance measurements in accordance to the
size of the used data

Fig. 6. Execution time by iteration and size of used data

A similar conclusion drawn by Fig 5 that shows the vari-
ations of the model performance indicators used in this work
namely MSE and R2. Both accuracy measures shown started
poorly but with the accumulation of the dataset and starting
from day 9 and onwards the performance has gotten stabilized.

However, the presented results can be further enhanced
with better performance achieved in fewer days of data by
fine-tuning certain training parameters, such as the number of
epochs and batch size. Nevertheless, it is important to set a
balance between improved results and efficient execution time,
which is crucial, especially when retraining and deploying the
model may be necessary as presented int the system model
shown in In Fig 2. In Fig 6, execution time is illustrated in
relation to data size. To accommodate presentation, the Y-axis
data size is scaled down by a factor of 80.

VI. CONCLUSION

In this work, we have introduced a data-driven and WSN-
based digital twin system model for efficient HVAC systems.
Mainly, we gave a detailed description of the proposed ar-
chitecture revealing the potential of such a combination. In
addition, a candidate building (CB)-LSTM model was devel-
oped using a dataset collected from a candidate building. The

steps followed to develop and evaluate the CB-LSTM model
has been detailed showing the impact of the period needed to
collect the data from a real building in order to obtain reliable
model performance. In addition, the correlation between the
size of data needed and the time needed to create and validate
the model along with the performance is considered in this
work. Future research will be directed into two streams. First,
increasing the model’s granularity by considering more rel-
ative environment parameters. Second, investigating possible
mechanisms and factors for efficient model deployment and
real-time predictions on gateway devices.
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